Comparison of the Ability of Several White-rot Fungi to Biobleach Acacia Oxygen-delignified Kraft Pulp

Main Article Content

Sitompul Afrida
Toshihiro Watanabe
Yutaka Tamai

Abstract

Previous screening analyses demonstrated that the in vivo biobleaching activities of the white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 are higher than those of Phanerochaete chrysosporium and Trametes versicolor. The purpose of the current study was to examine the production of extracellular enzymes of these four white-rot fungi grown on three types of low-cost media containing agricultural and forestry waste, and to evaluate the ability of the produced extracellular enzymes to biobleach Acacia oxygen-delignified kraft pulp (A-OKP). The biobleaching activity of extracellular fractions of I. lacteus, L. tigrinus, T. versicolor, and P. chrysosporium cultures was the most pronounced after 3 days of incubation with Acacia mangium wood powder supplemented with rice bran and 1% glucose (WRBG) with resultant Kappa number reduction of 4.4%, 6.7%, 3.3%, and 3.3%, respectively. Therefore, biobleaching ability of I. lacteus and L. tigrinus have been shown to be higher than of T. versicolor and P. chrysosporium, both in vivo and in vitro.

Keywords:
White-rot fungi, acacia kraft pulp, biobleaching, kappa number

Article Details

How to Cite
Afrida, S., Watanabe, T., & Tamai, Y. (2019). Comparison of the Ability of Several White-rot Fungi to Biobleach Acacia Oxygen-delignified Kraft Pulp. Asian Journal of Biotechnology and Bioresource Technology, 5(3), 1-10. https://doi.org/10.9734/ajb2t/2019/v5i330061
Section
Original Research Article

References

Boyle CD, Bradley RK, Reid ID. Solubilization and mineralization of lignin by white rot fungi. Appl. Environ. Micribiol. 1992;58(10):3217-3224.

Blanchette RA. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 1991;29:381- 403.

DOI:10.1146/annurev.py.29.090191.002121.

Blanchette RA. Degradation of the lignocellulose complex in wood. Can. J. Bot. 1995;73(S1): 999-1010.

DOI:10.1139/b95-350.

Peralta RM, Da Silva BP, Córrea RCG, Kato CG, Seixas FAV, Bracht A. Chapter 5-Enzymes from Bisidiomycetes-Peculiar and Efficient Tools for Biotechnology. In Biotechnology of Microbial Enzymes, 1st Ed.: Production, Biocatalysis, and Industrial Applications; Brahmachari, G, Demain AR, Adrio, JL, Eds; Academic Press: Chambridge, Massachusetts, United State. 2017; 5:119-149.

[ISBN. 978-0-12-803725-6].

Eriksson KE, Johnsrud SC, Valender L. Degradation of lignin and lignin model compounds by various mutants of the white-rot fungus Sporotrichum pulverulentum. Arch. Microbiol. 1983;135(3):161-168.

DOI. 10.1007/BF00414473.

Bezalel L, Hadar Y, Cerniglia C. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 1996;62(1):292-295.

Cameron MD, Timofeevski S, Aust SD. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 2000;54 (6):751-758.

DOI:10.1007/s002530000459.

Ryan D, Leukes W, Burton S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol. 2007;98(3):579-587.

DOI. 10.1016/j.biortech.2006.02.001.

Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L. Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp. Appl. Environ. Microbiol. 1993;62(1):292-295.

Jiménez L, Martínez C, Pérez I, López F. Biobleaching procedures for pulp from agricultural residues using Phanerochaete chrysosporium and enzymes. Process Biochem. 1997;32(4):297-304.

DOI. 10.1016/S0032-9592(96)00090-8.

Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC. White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation. 2011:22(4):823-83.

DOI:10.1007/s10532-010-9408-2.

Moreira MT, Feijoo G, Sierra-Alvarez R, Field JA. Reevaluation of the manganese requirement for the biobleaching of kraft pulp by white rot fungi. Bioresour. Technol. 1999:70(3):255-260.

DOI:10.1016/S0960-8524(99)00040-1.

Levin L, Forchiassin. Evaluation of argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour. Technol. 2004;94(2):169-260.

DOI. 10.1016/j.biortech.2003.12.002.

Afrida S, Tamai Y, Watanabe T, Mitsuru O. Screening of white rot fungi for biobleaching of Acacia oxygen-delignified kraft pulp. World J. Microbiol. Biotechnol. 2009;25(4):639-647.

DOI. 10.1007/s11274-008-9932-y.

Bajpai P, Anand A, Bajpai PK. Bleaching with lignin-oxidizing enzymes. Biotechnol. Annu. Rev. 2006;12:349-378.

DOI. 10.1016/S1387-2656(06)12010-4.

Afrida S, Tamai Y, Watanabe T, Mitsuru O. Biobleaching of Acacia kraft pulp with extracellular enzymes secreted by Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 using low-cost media. World J. Microbiol. Biotechnol. 2014;30(8):2263-2271.

DOI:10. 1007/s11274-014-1647-7.

Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 1992:23(3): 257-270.

DOI: 10.1016/0168-1656(92)90074-J.

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31(3):426-428.

DOI:10.1021/ac60147a030.

Berzins V. Micro kappa number. Pulp Pap. Mag. Can. 1966;67:206-208.
[ISSN 0033-4103.]

De Jong E, Field JA, de Bont JAM. Aryl alcohol in the physiology of ligninolytic fungi. FEMS Microbiol. Rev. 1994;13(2-3):153-187.

DOI:10.1111/j.1574-6976.1994.tb00041.x.

Elisashvili V, Kachlishvili E, Penninckx M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biotechnol. 2008;35(11): 1531-1538.

DOI:10.1007/s10295-008-0454-2.

Elisashvili V, Torok T, Kachlishvili E, Khardziani T, Metreveli E, Kobakhidze A, Berikashvili I. Evaluation and regulation of the lignocellulolytic activity of novel white-rot basidiomycetes. Global Journal of Biochemistry. 2011;2(2):134-141.

Iqbal HMN, Asgher M, Bhatti HN. Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. BioResources. 2011;6(2):1273-1287.
[ISSN. 1930-2126]

Hossain SM, Anantharaman N. Activity enhancement of ligninolytic enzymes of Trametes versicolor with bagasse powder. Afr. J. of Biotechnol. 2006;5(2):189-194.

Pal M, Calvo AM, Terrón MC, González AE. Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor. World J. Microbiol. Biotechnol. 1995;11(5):541-545.

DOI:10.1007/BF00286370.

Coconi-Linares N, Magaña-Ortíz D, Guzmán-Ortíz DA, Fernández F, Loske AM, Gómez-Lim MA. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2014;98(22):9283-9294.

DOI:10.1007/s00253-014-6105-9.

Ansari Z, Karimi A, Ebrahimi S, Emami E. Improvement in ligninolytic activity of Phanerochaete chrysosporium cultures by glucose oxidase. Biochem. Eng. J. 2016;105(Part B):332-338.

DOI. 10.1016/j.bej.2015.10.007.

Rothschild N, Novotný Č, Šašek V, Dosoretz CG. Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): Isolation and characterization of lignin peroxidase. Enzym. Microb. Technol. 2002;31(5):627-633.

DOI:10.1016/S0141-0229(02)00171-0.

Kadimaliev DA, Revin VV, Atykyan NA, Samuilov VD. Effect of wood modification on lignin consumption and synthesis of ligninolytic enzymes by the fungus Panus (Lentinus) tigrinus. Appl. Biochem. Microbiol. 2003;39(5):555-560.
DOI:10.1023/A:1025448703138.

Lechner BE, Papinutti VL. Production of ligninolytic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem. 2006;41(3):594-598.
DOI. 10.1016/j.procbio.2005.08.004.

Katagiri N, Tsutsuma Y, Nishida T. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state ferementation system. Appl. Environ. Microbiol. 1995;61(2):617-622.

Paice MG, Bourbonnais R, Reid ID, Archibald FS, Jurasek L. Oxidative bleaching enzymes: A review. J. Pulp Pap. Sci. 1995;21(8):J280-J284.
[ISSN 0826-6220.]

Moreira MT, Feijo G, Sierra-Alveraz R, Lema JM, Field JA. Biobleaching of oxygen delignified kraft pulp by several rot fungal strains. J. Biotechnol. 1997;53(2-3):237-251.

DOI:10.1016/S0168-1656(97)01676-3.

Addleman K, Dumonceaux T, Paice MG, Bourbonnais R, Archibald FS. Production and characterization of Trametes versicolor mutants unable to bleach hardwood kraft pulp. Appl. Environ. Microbiol. 1995;61(10):3687-3694.

Wariishi H, Valli K, Gold MH. Manganese (II) oxidation by manganese peroxidase from the Basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 1992;267(25):23688-23695.

Moldes D, Díaz M, Tzanov T, Vidal T. Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp. Bioresour. Technol. 2008;99(17):7959-7965.

DOI. 10.1016/j.biortech.2008.04.002.

Afrida S, Watanabe T, Tamai Y. A pronounced improvement of the Kappa number reduction and pulp properties associated with the use of extracellular enzymes secreted by selected fungal strains. BioResources. 2017;12(4):8272-8285.

[ISSN. 1930-2126.]

Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta, Kuhad RC. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: A pilot scale study. Bioresour. Technol. 2014;169:96-102.

DOI:10.1016/j.biortech.2014.06.066.