Leveraging Plant Growth Promoting Rhizobacteria for Sustainable Agriculture and Environment: An Overview
Asian Journal of Biotechnology and Bioresource Technology, Volume 9, Issue 1,
Page 39-59
DOI:
10.9734/ajb2t/2023/v9i1177
Abstract
The term ''soil health'' refers to specific qualities of soil that allow it to support crop growth and productivity over time without harming the environment. Healthy soil contains abundant microorganisms, including plant growth promoting rhizobacteria (PGPR), which perform various beneficial functions in the rhizosphere. PGPR aid in nutrient cycling and uptake prevents the growth of harmful plant pathogens, stimulates plant immunity, and directly enhances plant growth by producing phytohormones and other compounds. They also can clean up soil pollution through bioremediation. This article overviews examines literature on how PGPR contributes to maintaining soil health and reducing the need for toxic agrochemicals. Ultimately, the goal is to promote more sustainable agriculture practices using PGPR as biocontrol agents, plant growth stimulators, and rhizoremediators.
- PGPR
- biofertilizer
- bioinoculant
- rhizosphere
- sustainable agriculture
- sustainable environment
- soil fertility
How to Cite
References
Alavaisha E, Manzoni S, Lindborg R. Different agricultural practices affect soil carbon, nitrogen and phosphorous in KilomberoTanzania. J. Environ. Manag. 2019;234:159–166. Available:https://doi.org/10.1016/j.jenvman.2018.12.039.
McLaughlin A, Mineau P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995;55(3):201–212. Available:https://doi.org/10.1016/0167-8809(95)00609-V
Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014;34(1):199–228. Available:https://doi.org/10.1007/s13593-013-0151-z
Harte J. Human population as a dynamic factor in environmental degradation.Popul. Environ. 2007;28(4–5):223–236s. Available: https://doi.org/10.1007/s11111-007-0048-3.
Santoyo G, Pacheco CH, Salmerón, J.H., León, R.H. The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Span. J. Agric. Res. 2007;15 (1):13.
Available:https://doi.org/10.5424/sjar/2017151-9990
Slepetiene A, Volungevicius J, Jurgutis L, Liaudanskiene I, Amaleviciute-Volunge K, Slepetys, J, Ceseviciene J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag 2020;102:441–451.
Available:https://doi.org/10.1016/j.wasman.2019.11.008
Liu Anran, Wang Wenjing, Zheng Xiaoyan, Xianco Chen, Fu Wenting, Wang Gang, Ji Jing, Jin Chao, Guan Chunfeng Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere; 2022.Available:https://doi.org/10.1016/j.chemosphere.2022.134900
Santoyo G, Pacheco CH, Salmerón JH, León RH. The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Span. J. Agric. Res. 2017;15(1):13.
Available:https://doi.org/10.5424/sjar/2017151-9990
Probanza A, Garcıa JL, Palomino MR, Ramos B, Mañero FG. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl. Soil Ecol. 2002;20(2):75–84.Available:https://doi.org/10.1016/S0929-1393(02)00007-0
Chenniappan C, Narayanasamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, Ramalingam PV. Biocontrol efficiency of native plant growthpromoting rhizobacteria against rhizome Rot disease of turmeric. Biol. Contr. 2019;129,55–64. Available:https://doi.org/10.1016/j.biocontrol.2018.07.002
Subhasmita Mahapatra, Radheshyam Yadav, Wusirika Ramakrishna Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde Journal of applied microbiology.2022;132(5):3543-3562.
Available:https://doi: 10.1111/jam.15480
He Y, Pantigoso HA, Wu Z, Vivanco JM. Co-inoculation of Bacillus sp. And Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J. Appl. Microbiol. 2019;127(1):196–207.Available:https://doi.org/10.1111/jam.14273.
Shameer S, Prasad TNVKV. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul. 2018;84(3):603–615.
Available:https://doi.org/10.1007/s10725-017-0365-1
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018;156:225–246. Available:https://doi.org/10.1016/j.ecoenv.2018.03.013
Glick BR. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica; 2012.
Available:https://doi.org/10.6064/2012/963401, 2012
Majeed A, Muhammad Z, Ahmad H. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 2018;37(12):1599–1609. Available:https://doi.org/10.1007/s00299-018-2341-2
Hartmann A, Schmid M, Van Tuinen D, Berg G. Plant-driven selection of microbes. Plant Soil 2009;321(1–2):235–257. Available:https://doi.org/10.1007/s11104-008-9814-y
Kibbey TC, Strevett KA. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere. 2019;221:703–707. Available:https://doi.org/10.1016/j.chemosphere.2019.01.091
Ahmed T, Shahid M, Noman M, Hussain S, Khan MA, Zubair M, Mahmood F. Plant growth-promoting rhizobacteria as biological tools for nutrient management and soil sustainability. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Springer, Singapore. 2019; 95–110.
Available:https://doi.org/ 10.1007/978-981-13-7553-8_5
Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W. Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In: Plant Health under Biotic Stress. Springer, Singapore. 2019;109–127. Available:https://doi.org/10.1007/978-981-13-6040-4_6
Badri DV, Weir TL, van der Lelie D, Vivanco JM. Rhizosphere chemical dialogues: plant–microbe interactions. Curr. Opin. Biotechnol. 2009;20(6):642–650. Available:https://doi.org/10.1016/j.copbio.2009.09.014
Lucini L, Colla G, Moreno MBM, Bernardo L, Cardarelli M, Terzi V, Rouphael Y. Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry. 2019;157: 158–167. Available:https://doi.org/10.1016/j.phytochem.2018.10.033
Pausch J, Kuzyakov Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol. 2018;24(1):1–12.Available:https://doi.org/10.1111/gcb.13850
Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In: PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing. 2014;129–157. Available:https://doi.org/10.1016/B978-0-12-815879-1.00007-0
Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019; 19:29–37. Available:https://doi.org/10.1016/j.jare.2019.03.004
Singh M, Singh D, Gupta A, Pandey KD, Singh PK, Kumar A. Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In: PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, 2019;41–66. Available:https://doi.org/10.1016/B978-0-12-815879-1.00003-3
Alori ET, Babalola OO. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 2018;9:2213. Available:https://doi.org/10.3389/ fmicb.2018.02213
Harish S, Parthasarathy S, Durgadevi D, Anandhi K, Raguchander T. Plant growth-promoting rhizobacteria: harnessing its potential for sustainable plant disease management. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Springer, Singapore. 2019; 151–187. Available:https://doi.org/10.1007/978-981- 13-7553-8_8
Santoyo G, et al. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocon. Sci. Technol. 2012;22:855–872. Available:https://doi.org/10.1080/09583157.2012.694413
Ansari F, Jabeen M, Ahmad I. Pseudomonas azotoformans FAP5, a novel biofilm forming PGPR strain, alleviates drought stress in wheat plant. Int. J. Environ. Sci. Technol. 2021;18:1–16. DOI: 10.1007/s13762-020-03045-9
Kumar A, Patel JS, Meena VS, Ramteke PW. Plant growth-promotingrhizobacteria: strategies to improve abiotic stresses under sustainable agriculture.J. Plant Nutr. 2019;42 (11–12):1402–1415.
Available:https://doi.org/10.1080/01904167.2019.1616757
Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils. 2012; 48(5):489–499. Available:https://doi.org/10.1007/s00374-012-0691-4
Vargas R, Kenney AM, Bilinski T. Variable influences of water availability and Rhizobacteria on the growth of Schizachyrium scoparium (Little Bluestem) at different ages. Front. Microbiol. 2019;10:860. Available:https://doi.org/10.3389/fmicb.2019.00860
Kumar A, Verma JP. The role of microbes to improve crop productivity and soil health. In: Ecological Wisdom Inspired Restoration Engineering. Springer, Singapore. 2019;249–265.Available:https://doi.org/10.1007/978-981-13-0149-0_14
Raheem A, Sajid M, Iqbal MS, Aslam H, Bilal M, Rafiq F. Microbial inhabitants of agricultural land have the potential to promote plant growth, but they are liable to traditional practice of wheat (T. aestivum L) straw burning. Biocatal. Agric. Biotechnol. 2019;18:101060. Available:https://doi.org/10.1016/j.bcab.2019.101060
Kurtany AL AES, Alis AM, Oleawy MF. Tomato seedling production using an inoculum prepared with plant growth-promoting rhizobacteria (pgpr) isolates .SABRAO Journal of Breeding and Genetics. 2023;55(1):230-236.
Available:http://doi.org/10.54910/sabrao2023.55.1.21
Basu Anirban, Prasad Priyanka Narayan Das Subha , Kalam Sadaf ,. Sayyed R. Z, Reddy M. S, Enshasy El Hesham.Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Recent Trends in Plant-Growth-Promoting Rhizobacteria Research for 21st-Century Sustainable Agriculture. 2021;13(3):1140. Available:https://doi.org/10.3390/su13031140
Mehmood U, Inam-ul-Haq M, Saeed M, Altaf A, Azam F, Hayat S. A brief review on plant growth promoting Rhizobacteria (PGPR): A key role in plant growth promotion. Plant Prot. 2018; 2(2):77–82.
Available:http://esciencepress.net/journals/
Verma A, Kukreja K, Pathak D, Suneja S, Narula N. In vitro production of plant growth regulators (PGRs) by Azotobacter chroococcum. Indian J. Microbiol. 2001;41:305–307.
Zhang X, Baars O, Morel FM. Genetic, structural, and functional diversity of low and high-affinity siderophores in strains of nitrogen fixing Azotobacter chroococcum. Metall 2019;11(1):201–212. Available:https://doi.org/10.1039/C8MT00236C
Ibal JC, Jung BK, Park CE, Shin JH. Plant growth-promoting rhizobacteria used in South Korea. Appl. Biol. Chem. 2018;61(6):709–716. Available:https://doi.org/10.1007/s13765-018-0406-0
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann. Microbiol. 2019;69(4):307–320. Available:https://doi.org/10.1007/s13213-019-01448-9.
Akbar S, Sultan S. Soil bacteria showing a potential for chlorpyrifos degradation and plant growthenhancement.Braz.J.Microbiol. 2016;47(3):563–570. Available:https://doi.org/ 10.1016/j.bjm.2016.04.009
Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 2000;24(4):487–506.
Available:https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, Mukherjee A. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. PloS One. 2019;14:e0217309. Available:https://doi.org/10.1371/journal.pone.0217309
Schillaci M, Gupta S, Walker R, Roessner U. The role of plant growth promoting bacteria in the growth of cereals under abiotic stresses. Root Biology-Growth, Physiology, and Functions; 2019.
Available:https://doi.org/10.5772/intechopen.87083
Hungria M, Nogueira MA, Araujo RS. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agric. Ecosyst. Environ. 2016;221:125–131. Available:https://doi.org/10.1016/j.agee.2016.01.024
Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PH. Effects of heavy metals on plant-associated rhizobacteria:comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J. Trace Elem. Med. Biol. 2005;19(1):91–95. Available:https://doi.org/10.1016/j.jtemb.2005.03.002
Cassán FD, Lucangeli CD, Bottini R, Piccoli PN. Azospirillum spp. metabolize[17, 17-2H2] gibberellin A20 to [17, 17-2H2] gibberellin A1 in vivo in dy rice mutantseedlings. Plant Cell Physiol. 2001;42(7):763–767.
Available:https://doi.org/10.1093/pcp/pce099
San Fulgencio NS, Suárez-Estrella F, López MJ, Jurado MM, López-González JA, Moreno J. Biotic aspects involved in the control of damping-off producing agents: the role of the thermotolerant microbiota isolated from composting of plant waste. Biol. Contr. 2018;124:82–91. Available:https://doi.org/10.1016/j.biocontrol.2018.04.015
Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, Lee IJ. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol. Biochem. 2016;106:236–243.Available:https://doi.org/10.1016/j.plaphy.2016.05.006
Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015;7(2):096-102.
Available:https://10.4172/1948-5948.1000188
Abdallah DB, Frikha-Gargouri O, Tounsi S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol. Contr. 2018;124:6167.
Available:https://doi.org/10.1016/j. biocontrol.2018.01.013
Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front. Microbiol. 2015;6:780.
Available:https://doi.org/10.3389/fmicb.2015.00780
Bai Y, D’Aoust F, Smith DL, Driscoll BT. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 2002; 48 (3):230–238.Available:https://doi.org/10.1139/w02-014
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agroecological zones of India. J. Basic Microbiol. 2016;56(1):44–58. Available:https://doi.org/10.1002/jobm.201500459
Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl. Soil Ecol. 2014;73:87–96. Available:https://doi.org/10.1016/j.apsoil.2013.08.009
Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J. Basic Microbiol. 2015;55(1):33–44. Available:https://doi.org/10.1002/jobm.201300562
Contesini FJ, Melo RRD, Sato HH. An overview of Bacillus proteases: from production to application. Crit. Rev. Biotechnol. 2018;38(3):321–334. Available:https://doi.org/10.1080/07388551.2017.1354354
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115–125. Available:https://doi.org/10.1016/j.tim.2007.12.009
Hashami SZ, Nakamura H, Ohkama-Ohtsu N, Kojima K, Djedidi S, Fukuhara I, et al. Evaluation of immune responses induced by simultaneous inoculations of soybean (Glycine max [L.] Merr.) with soil bacteria and rhizobia. Microb. Environ. 2019;34(No. 1):64–75.Available:https://doi.org/10.1264/jsme2.ME18110
Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S. Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg. Chem. 2018;77:494–506.
Available:https://doi.org/10.1016/j.bioorg.2018.02.014
Rao MA, Scelza R, Scotti R, Gianfreda L. Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr. 2010;10(3):333–353. Available:https://doi.org/10.4067/S0718-95162010000100008
Liu X, Jiang X, He X, Zhao W, Cao Y, Guo T, Tang X. Phosphate solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J. Plant Growth Regul. 2019;38 (4):1314–1324.
Available:https://doi.org/10.1007/s00344-019-09935-8
Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015;6:151. Available:https://doi.org/10.3389/fpls.2015.00151
Hernández-León R, Rojas-Solís D, Miguel Contreras-Pérez M, del Carmen Orozco-Mosqueda, M, Macías-Rodríguez LI, Reyes-de la Cruz H, Santoyo G. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Contr. 2015;81:83–92. Available:https://doi.org/10.1016/j.biocontrol.2014.11.011
Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz, HR, Macías-Rodríguez L. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 2010;51(1):75–83. Available:https://doi.org/10.1007/s13199-010-0066-2
Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, del Carmen Rocha-Granados M, Macías-Rodríguez L, Santoyo G. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal. Agric. Biotechnol. 2018;13:46–52.
https://doi.org/10.1016/j.bcab.2017.11.007
Summuna B, Gupta S, Sheikh PA. Plant growth and health promoting plant-microbe interactions. In: Plant Health under Biotic Stress. Springer, Singapore. 2019;253–260. Available:https://doi.org/10.1007/978-981-13-6040-4_13
Orozco-Mosqueda, M., del Carmen Rocha-Granados, M., Glick, B.R., Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018; 208, 25–31. https://doi.org/10.1016/j.micres.2018.01.005
Santoyo G, Sanchez-Ya-n~ez JM, de los Santos-Villalobos S. Methods for detecting biocontrol and plant growth-promoting traits in Rhizobacteria. In: Methods in Rhizosphere Biology Research. Springer, Singapore. 2019;133–149. Available:https://doi.org/ 10.1007/978-981-13-5767-1_8
Galindo E, Serrano-Carreón L, Gutiérrez CR, Allende R, Balderas K, Patiño M, Jurado C. The challenges of introducing a new biofungicide to the market: a case study. Electron. J. Biotechnol. 2013;6(3).
Available:https://doi.org/10.2225/vol16-issue3-fulltext-6, 5-5
Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Curr. Opin. Plant Biol. 2018;44:7–15. Available:https://doi.org/10.1016/j.pbi.2017.12.001
Dinnage R, Simonsen AK, Barrett LG, Cardillo M, Raisbeck-Brown N, Thrall PH, Prober SM. Larger plants promote a greater diversity of symbiotic nitrogenfixing soil bacteria associated with an Australian endemic legume. J. Ecol. 2019;107(2):977–991.Available:https://doi.org/10.1111/1365-2745.13083
Martins AO, Omena-Garcia RP, Oliveira FS, Silva WA, Hajirezaei MR, Vallarino JG, Araújo, WL. Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environ. Exp.Bot. 2019; 157:331–343.Available:https://doi.org/10.1016/j.envexpbot.2018.10.036
Ji SH, Kim JS, Lee CH, Seo HS, Chun SC, Oh J, Park G. Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma. Sci. Rep. 2019;9(1):1–16.
Available:https://doi.org/10.1038/s41598-018-38026-z
Kuypers MM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018;16(5):263.
Available:https://doi.org/10.1038/nrmicro.2018.9
Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. Amb. Express 2018; 8 (1):73. Available:https://doi.org/10.1186/s13568-018-0608-1
Aulakh MS, Garg AK, Manchanda JS, Dercon G, Nguyen ML. Biological nitrogen fixation by soybean and fate of applied 15 N-fertilizer in succeeding wheat under conventional tillage and conservation agriculture practices. Nutrient Cycl. Agroecosyst. 2017;107(1):79–89.Available:https://doi.org/10.1007/s10705-016-9816-8
Tilak KVBR, Ranganayaki N, Manoharachari C. Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur. J. Soil Sci. 2006;57(1):67–71.
Available:https://doi.org/10.1111/j.1365-2389.2006.00771.x
Shiraishi A, Matsushita N, Hougetsu T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria burkholderia sp. Syst. Appl. Microbiol. 2010;33 (5):269–274.
Available:https://doi.org/10.1016/j.syapm.2010.04.005
Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch. Agron Soil Sci. 2010;56(1):73–98.
Available:https://doi.org/10.1080/03650340902806469
Heydari MM, Brook RM, Jones DL. The role of phosphorus sources on root diameter, root length and root dry matter of barley (Hordeum vulgare L.). J. PlantNutr. 2019;42(1):1–15.
Available:https://doi.org/10.1080/01904167.2018.1509996
Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol.2017;8:971. Available:https://doi.org/ 10.3389/fmicb.2017.00971
Zaidi A, Khan S. Interactive effect of rhizotrophic microorganisms on growth,yield, and nutrient uptake of wheat. J. Plant Nutr. 2005;28 (12), 2079–2092. Available:https://doi.org/10.1080/01904160500320897
Kafle A, Cope KR, Raths R, Krishna Yakha J, Subramanian S, Bücking H, Garcia K. Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy 2019;9(3):127.
Available:https://doi.org/10.3390/agronomy9030127
Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, Rasool M. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Biol. Sci. 2019;26(5):1061–1067.Available:https://doi.org/10.1016/j.sjbs.2019.04.004
Wu M, Wei Q, Xu L, Li H, Oelmüller R, Zhang W. Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil 2018; 432 (1–2), 333–344. Available:https://doi.org/10.1007/s11104-018-3795-2
Puppala KR, Bhavsar K, Sonalkar V, Khire JM, Dharne MS. Characterization of novel acidic and thermostable phytase secreting Streptomyces sp.(NCIM 5533) for plant growth promoting characteristics. Biocatal. Agric. Biotechnol. 2019;18:101020. Available: https://doi.org/10.1016/j.bcab.2019.101020
Rathinasabapathi B, Liu X, Cao Y, Ma LQ. Phosphate-solubilizing Pseudomonads for improving crop plant nutrition and agricultural productivity. In: Crop Improvement through Microbial Biotechnology. Elsevier. 2018;363–372.Available: https://doi.org/10.1016/B978-0-444-63987-5.00018-9
Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 2006;57(2):425–436. Available: https://doi.org/10.1093/jxb/erj034.
Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Iqbal MA. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. J. Plant Nutr. 2018;41(13):1734–1743. Available: https://doi.org/10.1080/01904167.2018.1459688
Etesami H, Emami S, Alikhani HA. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects A review. J. Soil Sci.Plant Nutr. 2017;17(4):897–911.
Available: https://doi.org/10.4067/S0718-95162017000400005
Bahadur I, Maurya R, Roy P, Kumar A. Potassium-solubilizing bacteria (KSB):a microbial tool for K-solubility, cycling, and availability to plants. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Springer, Singapore. 2019;257–265. Available: https://doi.org/10.1007/978-981-13-7553-8_13
Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl. Soil Ecol. 2012;61:264–272.DOI:10.1016/j.apsoil.2012.01.006
Latef AAHA, Alhmad MFA, Kordrostami M, Abo-Baker ABAE, Zakir A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J. Plant Growth Regul. 2020;39:1293–1306
Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal. Agric. Biotechnol. 2016;7:202–209.
Available:https://doi.org/10.1016/j.bcab.2016.06.007
Cassán F, Vanderleyden J, Spaepen S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J. Plant Growth Regul. 2014;33(2):440–459. Available:https://doi.org/10.1007/s00344-013-9362-4
Dimkpa C, Weinand T, Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009;32(12):1682–1694. Available:https://doi.org/10.1111/j.1365-3040.2009.02028.x
Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A. Phytohormone priming: regulator for heavy metal stress in plants. J. Plant Growth Regul. 2019;38(2):739–752.Available:https://doi.org/10.1007/s00344-018-9886-8
Syed Asad, Elgorban M. Abdallah, Bahkali H. Ali, Eswaramoorthy Rajalakshmanan, Iqbal Khalid Rana ,Danish Subhan. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake.Scientific Reports; 2023.
Available:https://doi.org/10.1038/s41598-023-31330-3
Mahmoud OMB, Hidri R, Talbi-Zribi O, Taamalli W, Abdelly C, Djébali N. Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South Afr. J. Bot. 2020;128:209–217.Available:https://doi.org/10.1016/j.sajb.2019.10.023
Nascimento FX, Hernández AG, Glick BR, Rossi MJ. Plant growth promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol. Rep. 2020;25:e00406 Available:https://doi.org/10.1016/j.btre.2019.e00406
Zhang DJ, Yang YJ, Liu CY, Zhang F, Hu W, Gong SB, Wu QS. Auxin modulates root-hair growth through its signaling pathway in citrus. Sci. Hortic. (Canterb.) 2018;236:73–78.
Available:https://doi.org/10.1016/j.scienta.2018.03.038
Acuña J, Campos M, de la Luz Mora M, Jaisi DP, Jorquera MA. ACCD producing rhizobacteria from an Andean Altiplano native plant (Parastrephiaquadr angularis) and their potential to alleviate salt stress in wheat seedlings. Appl.Soil Ecol. 2019;136:184–190.Available:https://doi.org/10.1016/j.apsoil.2019.01.005
Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 2017;121:102–117.Available:https://doi.org/10.1016/j.apsoil.2017.09.030
Salazar MJ, Rodriguez JH, Cid CV, Pignata ML. Auxin effects on Pb phytoextraction from polluted soils by Tagetes minuta L. and Bidens pilosa L. :extractive power of their root exudates. J. Hazard Mater. 2016;311:63–69.
Available:https://doi.org/10.1016/j.jhazmat.2016.02.053
Imada EL, de Oliveira ALM, Hungria M, Rodrigues EP. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Res. Microbiol. 2017;168(3):283–292.Available:https://doi.org/10.1016/j.resmic.2016.10.010
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. Auxin EvoDevo: conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling. Mol. Plant. 2019;12(3):298–320.
Available:https://doi.org/10.1016/j.molp.2018.12.012
Goswami M, Suresh DEKA. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere. 2020;30(1):40–61. Available:https://doi.org/10.1016/S1002-0160(19)60839-8
Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Hassen AI, Labuschagne N. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol. Res. 2020;232: 126388.
Available:https://doi.org/10.1016/j.micres.2019.126388
Ahanger MA, Gul F, Ahmad P, Akram NA. Environmental stresses and metabolomics—deciphering the role of stress responsive metabolites. In: Plant Metabolites and Regulation under Environmental Stress. Academic Press. 2018;53–67.Available:https://doi.org/10.1016/B978-0-12-812689-9.00003-0
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiol. Res. 2018;208:85–98.
Available:https://doi.org/10.1016/j.micres.2018.01.010
Zou X, Wang Q, Chen P, Yin C, Lin Y. Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). J. Plant Physiol. 2019;237:72–79.
Available:https://doi.org/10.1016/j.jplph.2019.04.003
Martins AO, Omena-Garcia RP, Oliveira FS, Silva WA, Hajirezaei MR, Vallarino JG, Araújo WL. Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environ. Exp.Bot. 2019;157:331–343.Available:https://doi.org/10.1016/j.envexpbot.2018.10.036
Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 2007;292(1–2):305–315. Available:https://doi.org/10.1007/s11104-007-9233-5
Zürcher E, Müller B. Cytokinin synthesis, signaling, and function—advances and new insights. Int. Rev. Cell Mol. Biol. 2016;324:1–38.Available:https://doi.org/10.1016/bs.ircmb.2016.01.001
Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC. Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol. Indicat. 2019;105:601–612.
Available:https://doi.org/10.1016/j.ecolind.2018.05.084
Selvakumar G, Bindu GH, Bhatt RM, Upreti KK, Paul AM, Asha A, Sharma M. Osmotolerant cytokinin producing microbes enhance tomato growth in deficitirrigation conditions. P. Natl. A. Sci. India B. 2018;88(2):459–465.
Available:https://doi.org/10.1007/s40011-016-0766-3
Karthik C, Elangovan N, Kumar TS, Govindharaju S, Barathi S, Oves M, Arulselvi PI. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol. Res. 2017;204:65–71.Available:https://doi.org/10.1016/j.micres.2017.07.008
Kloepper WJ, et al. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 1980; 286:885–886. Available:https://doi.org/10.1038/286885a0
Sinha AK, Parli BV. Siderophore production by bacteria isolated from mangrove sediments: a microcosm study. J. Exp. Mar.Ecol. 2020;524:151290. Available:https://doi.org/10.1016/j.jembe.2019.151290
Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Saxena AK. Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion,and biotechnological applications for sustainable agriculture. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Springer, Singapore. 2019; 19–65.
Available:https://doi.org/10.1007/978-981-13-7553-8_2
Bitas V, Kim HS, Bennett JW, Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe Interact. 2013;26(8):835–843. Available:https://doi.org/10.1094/MPMI-10-12-0249-CR
Santoyo G, Sánchez – Yáñez JM, de los Santos-Villalobos, S. Methods for detecting biocontrol and plant growth-promoting traits in Rhizobacteria. In: Methods in Rhizosphere Biology Research. Springer, Singapore. 2019;133–149.
Available:https://doi.org/10.1007/978-981-13-5767-1_8
Orozco-Mosqueda M, Velázquez -Becerra C, Macías-Rodríguez LI, Santoyo G, Flores-Cortez I, Alfaro-Cuevas R, Valencia-Cantero E. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 2013;362(1–2):51–66. Available:https://doi.org/10.1007/s11104-012-1263-y
Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Flores-Cortez I, Santoyo G, Hernádez-Soberano C, Valencia-Cantero E. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits the growth of phytopathogenic fungi in vitro. Protoplasma 2013;250(6):1251–1262.
Available:https://doi.org/10.1007/s00709-013-0506-y
Yasmin Humaira, Rashid Urooj, Hassan Nadeem Muhammad, Nosheen Asia, Naz Rabia, Ilyas Noshin, Sajjad Muhammad , Azmat Ammar, Alyemeni Nasser Mohammed .Volatile organic compounds produced by Pseudomonas pseudoalcaligenes alleviated drought stress by modulating defense system in maize (Zea mays L.). Physiologia Plantarum; 2020. Available:https://doi.org/10.1111/ppl.13304
Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag. Sci. 2012;68(9): 1306–1310.
Available:https://doi.org/10.1002/ps.3301
Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW. Bacterial volatiles promote growth in Arabidopsis. P.N.A.S. 2003;100(8):4927–4932. Available:https://doi.org/10.1073/pnas.0730845100
Aloo BN, Makumba BA, Mbega ER. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 2019;219:26–39.
Available:https://doi.org/10.1016/j.micres.2018.10.011
Aarab S, Ollero J, Megías M, Laglaoui A, Bakkali M, Arakrak A. Some characteristics of phosphate solubilizing rhizobacteria as an ecological strategy for sustainable agriculture. Mater. Today: Proceedings. 2019;13:1224–1228.
Available:https://doi.org/ 10.1016/j.matpr.2019.04.091.
Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal. Agric. Biotechnol. 2018;16:163–171.Available:https://doi.org/10.1016/j.bcab.2018.07.030
Rijavec T, Lapanje A. Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Front. Microbiol. 2016;7,1785. Available:https://doi.org/10.3389/fmicb.2016.01785.
Martínez-Absalón S, Rojas-Solís D, Hernández-León R, Prieto-Barajas C, Orozco-Mosqueda, M.D.C., Pe~na-Cabriales, J.J., Santoyo, G. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci. Technol. 2014;24(12): 1349–1362. Available:https://doi.org/10.1080/09583157.2014.940846
Hao Z, Van Tuinen D, Wipf D, Fayolle L, Chataignier O, Li X, Adrian M. Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biol. Contr. 2017;109:42–50.
Available:https://doi.org/10.1016/j.biocontrol.2017.03.004
Siqueira JGW, Rodrigues C, de Souza Vandenberghe LP, Woiciechowski AL, Soccol CR. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy. 2020;132:105419. Available:https://doi.org/10.1016/j.biombioe.2019.105419
Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl. 2017;62(6):805–819.
Available:https://doi.org/10.1007/s10526017-9838-4
Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN. Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. J .Genet. Eng. Biotechnol. 2017;15(1):197–210.
Available:https://doi.org/10.1016/j.jgeb.2016.12.001
Sampaio CJ, de Souza JR, Dami~ao AO, Bahiense TC, Roque MR. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a diesel oilcontaminated mangrove by plant growth-promoting rhizobacteria. 2019;3 Biotech 9 (4):155.Available:https://doi.org/10.1007/s13205-019-1686-8
Zilaie Najafi Mahmood, Arani Mosleh Asghar, Etesami Hassan. The importance of plant growth-promoting rhizobacteria to increase air pollution tolerance index (APTI) in the plants of green belt to control dust hazards, Front. Plant Sci. 2023;14:1098368. Available:https://doi.org/10.3389/fpls.2023.1098368
Sharma RK, Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl. Soil Ecol. 2016; 107:66–78. Available:https://doi.org/10.1016/j.apsoil.2016.05.009
Ullah I, Al-Johny BO, AL-Ghamdi KM, Al-Zahrani HA, Anwar Y, Firoz A, Almatry MAA. Endophytic bacteria isolated from Solanum nigrum L.,alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicol. Environ. Saf. 2019;174:197–207. Available:https://doi.org/10.1016/j.ecoenv.2019.02.074
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. Ecotoxicol. Environ. Saf. 2018;157:40–60.Available:https://doi.org/10.1016/j.ecoenv.2018.03.014
Chakraborty J, Das S. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 2016;23(17):16883–16903.
Available:https://doi.org/10.1007/s11356-016-6887-7
Terzaghi E, Zanardini E, Morosini C, Raspa G, Borin S, Mapelli F, Di Guardo, A. Rhizoremediation half-lives of PCBs: role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. Sci. Total Environ. 2018;612:544–560.
Available:https://doi.org/10.1016/j.scitotenv.2017.08.189
Reddy AVB, Moniruzzaman M, Aminabhavi TM. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem. Eng. J. 2019;358:1186–1207.
Available:https://doi.org/10.1016/j.cej.2018.09.205
Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Borin S. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: an outlook on plant-microbe beneficial interactions. Sci. Total Environ. 2017;575,1395–1406. Available:https://doi.org/10.1016/j.scitotenv.2016.09.218
Field JA, Sierra-Alvarez R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut. 2008;155(1):1–12. Available:https://doi.org/10.1016/j.envpol.2007.10.016
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J. Biosci. Bioeng. 2008;105(5):433–449. Available:https://doi.org/10.1263/jbb.105.433
Yim YJ, Seo J, Kang SI, Ahn JH, Hur HG. Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch. Environ. Contam. Toxicol. 2008;54(3):406–411.
Available:https://doi.org/10.1007/s00244-007-9044-y
Rangasamy K, Athiappan M, Devarajan N, Samykannu G, Parray JA, Aruljothi KN, Abd_Allah EF. Pesticide degrading natural multidrug resistance bacterial flora. Microb. Pathog. 2018;114:304–310.
Available:https://doi.org/10.1016/j.micpath.2017.12.013
Singh N, Sethunathan N, Megharaj M, Naidu R. Bioavailability of sorbed pesticides to bacteria: an overview. Dev. Soil Sci. 2008;32:73–82. Available:https://doi.org/10.1016/S0166-2481(07)32005-9
Morillo E, Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils. Sci. Total Environ. 2017;586:576–597.Available:https://doi.org/10.1016/j.scitotenv.2017.02.020
Liu T, Xu S, Lu S, Qin P, Bi B, Ding H, Liu X. A review on removal of organophosphorus pesticides in constructed wetland: performance, mechanism and influencing factors. Sci. Total Environ. 2019;651:2247–2268.
Available:https://doi.org/10.1016/j.scitotenv.2018.10.087
Subbanna ARNS, Rajasekhara H, Stanley J, Mishra KK, Pattanayak A. Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biol. Biochem. 2018;116:52–66.
Available:https://doi.org/10.1016/j.soilbio.2017.09.019
Lutz W, Sanderson W, Scherbov S. Doubling of world population unlikely. Nature 1997;387 (6635):803– 805. Available:https://doi.org/10.1038/42935
Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M, Ruiz- Buck D, Mohanraju P. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366(6465): 606–612.Available:https://doi.org/10.1126/science.aaw9285
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management. 2020;273:111118.
-
Abstract View: 32 times
PDF Download: 38 times