Effect of Culinary Treatments on Nutritional and Anti- nutritional Profils of Sesame Oilcake for Use in Fighting Protein Malnutrition

Bebbe Fadimatou

Department of Biochemistry, University of Yaounde I, Yaounde, Cameroon.

Lonodjita Trésor

Department of Biochemistry, University of Yaounde I, Yaounde, Cameroon.

Doumta Charles Falang *

Department of Biomedical Sciences, Faculty of Health Sciences (FHS), University of Buea, Buea, Cameroon.

Moundipa Fewou Paul

Department of Biochemistry, University of Yaounde I, Yaounde, Cameroon.

*Author to whom correspondence should be addressed.


To tackle protein malnutrition, the valorization of sesame cake has been initiated. A by-product of sesame oil extraction, it is commonly used as livestock feed. However, it could be used to enrich staple foods and improve their nutritional value, particularly in rural areas where access to quality protein sources is limited. In order to highlight its nutritional richness, certain soaking, roasting and hulling treatments were used to assess their impact on nutritional quality. Then extraction of the oil from the seeds using a mechanical press to obtain sesame cake was proceeded. Standard methods were used for physicochemical characterization of nutritional, mineral and anti-nutritional compounds. The results showed that the sesame oilcake obtained from the various treatments contained significant levels of total protein (26.55- 36.72g/100g DM), residual lipids (24.19- 32.37g/100g DM), carbohydrates (10.86- 18.74g/100g DM), ash (4.32 - 6.19 g/100g DM) and fiber (10.71-20.76 g/100g DM). Similarly, evaluation of the mineral composition of these meal concentrates showed their richness in phosphorus (20.47 - 176.66 mg/100g DM), calcium (15.75 - 467.42 mg/100g DM), magnesium (13.45 - 340.33 mg/100g DM), iron (4.90-14.70 mg/100g DM), and zinc (0.71-4.39 mg/100g DM). However, these sesame cake concentrates also contained anti-nutritional factors such as oxalates (0.48 - 1.04 mg/100g DM), phytates (0.08 - 0.12 mg/100g DM), saponins (0.084 - 1.10 mg/100g DM) and tannins (0.33 - 1.36 mg/100g DM). Fortunately, these were considerably reduced by pretreatment. Indeed, a 40.07, 83.33, 64.64 and 60.95% reduction in tannins, phytates, oxalates and saponins respectively were observed. The considerable reduction in anti-nutrients in the various cakes is an advantage for the digestibility and nutrient availability of this feed. Its high protein and mineral content could therefore be considered for use in protein malnutrition.

Keywords: Sesame cake, protein malnutrition, soaking, roasting, shelling

How to Cite

Fadimatou, Bebbe, Lonodjita Trésor, Doumta Charles Falang, and Moundipa Fewou Paul. 2024. “Effect of Culinary Treatments on Nutritional and Anti- Nutritional Profils of Sesame Oilcake for Use in Fighting Protein Malnutrition”. Asian Journal of Biotechnology and Bioresource Technology 10 (2):60-71. https://doi.org/10.9734/ajb2t/2024/v10i2205.


Download data is not yet available.


Kumar M, Jayashree P, Sharmila P. Extraction of ultra-low gossypol protein from cottonseed: characterization based on antioxidant activity, structural morphology and functional group analysis. Elsevier. 2021;140(11):178-197

Birama S, Fallou S, Diégane D, Mamadou S, Djibrine T, Amadou K, Marène N. Synthèse de connaissance et quelques aquis de recherche sur le sésame ( Sesamun Indicum L. ) au Sénégal. International Journal Biological et Chemical Sciences. 2018;12(3):1469-1483. DOI: 10.4314/ijbes.v12i3.32

FAO. Soaring food prices: facts,perspectives, impacts and actions required. background paper prepared for the highlevel conference on world food security: The challenges of climate change and bioenergy. Rome; 2020.

OMS. Conférence Internationale sur la Nutrition : Les Grands Enjeux des Stratégies Nutritionnelles; 2021.

Kone F, Kouame I, Faulet M. Qualité nutritionnelle des graines germées de sésame( Sesamum indicum L.) cultivées en Cote D'Ivoire. Agronomie Africaine. 2021;33(2):203-215

AOAC. Official methods analysis of the association of official analytical chemists (éd. 11th). (W. Horwitth, Éd.) Washington D.C ; 1980.

Devani M, Shisho S, Suhagia B. Spectrophotometric method for the micro determination of nitrogen in kjedahl digest. Journal of the A.O.C. 1989;(72): 953-956.

Bourely J. Observation sur le dosage de l'huile de cotonnier. Coton et Fibre Fropical, 1982;27(2):183-196.

A.O.A.C. Oficial Methods of analysis. Association of Official Analytical Chemist (éd. 16th). Washinton D.C.; 1990.

Horwitz W. Official method of analysis of AOAC (éd. 17th). Maryland, USA: AOAC.; 2000.

Ndhlala A, Kasiyamhuru A, Mupure C, Chitindingu K., Benhura M, Muchuweti M. Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocaya birrea. Foot Chemistry. 2007;103(1):82-87.

Olayeye L, Owolabi F, Adesina A, Isiaka A. Chemical compossition of red and white cocoyam (Colocasia esculenta) leaves. Inernational Journal of Science and Research. 2013;11(2):120-122.

Aina VO, Sambo B, Zakari A, Haruna HM., Umar KR, Akinboboye Adama M. Determination of nutritional and anti-nutrient content of Vitis vinifera ( Grapes) grown in Bomo ( Area C) Zaria Nigeria. Advance Journal of Food Science and Technology. 2012;4(6):445-448.

Obadoni B, Ochuko P. Phytochemical studies and comparative efficacy of the crude extracts of some homeostatic plants in Edo and Delta States of Nigeria. Global Journal of Pure and Applied Sciences. 2001;8(2):203-208.

Gagnon Yancie. Étude de l’extraction des huiles végétales en milieu aqueux assistée par des tensioactifs. Mémoire de thèse de l'Université Alliance Sorbonne; 2021

Yoshida H, Shigezaki J, Takagi S, Kajimto G. Variations in the composition of various acyl lipids, tocopherols and lignans in sesame seed oils roasted in a microwave oven. Journal of Sciencces Food and Agriculture. 1995;.68:407–415. DOI: 10.1002/jsfa.2740680403

Lee YC, Oh SW, Chang J, Kum IH. Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chemistry.2004; 84(3):1–6. DOI: 10.1016/S0308-8146(03)00158-4

Claire clement. sesame : de la graine à l'huile (avec la presse Piteba).Récupéré sur Available:http://1ruche3pintades.over-blog.com/2020/06/sesame-de-la-graine-al-huile-avec-la-presse-piteba.html.2020.

Rizki H, Kzaiber F, Nablousi A, Hanine H. Chemical composition and morphological markers of 35 cultivars of sesam( Sesamum indicum L.) from differnt areas in Morocco. IJTEER. 2015;3(1):50-55.

Aleymeni MN, Basahy AY, Sher H. Physico-chimical analysis and mieneral composition of some sesame seed (Sesamum indicum L.) grown in the Gizan area of Saudi Arabi. Journal Med Plants. 2011;5(2):270-274.

Murray R, Granner D, Mayes P, Rodwell V. Biochimie de Harper (éd. 5e). (T. d. Domenjoud, Éd.); 2013.

Bau HM, Villaume JP, Nicolas, Me-Jean. Effect of germination on chemical composition, biochemical factors of soya bean ( Glycine max ) seeds. Journal Science Food Agricuture. 1997;5(2):1-9.

Devi CB, Kushwaha A, Kumar A. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). Journal Food Science Technology. 2015;52(10):6821-6827.

Sene B, Sarr F, Diouf D, Kane A, Traore D. Étude de la composition minérale et des teneurs en protéines et en matières grasses de huit variétés de sésame (Sesamum indicum L.) introduites au Sénégal pour un criblage variétal. EDP Sciences. 2018;25(6):601.

FAO & WHO. Protein and amino acid requirements in human nutrition. Report of a Joint WHO/ FAO / UNU Expert. Technical Report Series 935. Cholé – Doc N°111 ; 2007.

Shakerardekani A, Karim R, Ghazali H. Effet du trempage et de la torréfaction des graines de sésame sur la qualité du tahini ( pâte de sésame) et du halva. Journal of Food Science and Technology. 2012;49 (4):490-496.

Andrea Komesu et Luiza Helena da Silva Martins. fruit and vegetable waste valorization in North and Northeast regions of Brazil. Sciences Directe. 2023;2(6):45-56

Bonnand-Ducasse M, Della Vella G, Lefebvre J, Saulnier L. Effect of wheat dietary fibres on bread dough development and rheological properties. Journal of Cereal Science. 2010;5(2);200-206. DOI: https://doi.org/10.1016/j.jcs.2010.05. 006

Sila DN, Van Buggenhout S, Duvetter T, et al. Pectins in processed fruits and vegetables: part II – structure–function relationships. Compr Rev Food Sci Food Saf. 2009;8(2):86–104

Nzikou . Characterization of seeds and oil of sesame (Sesamum indicum L.) and the kinetics of degradation of the oil during heating. Research Journal of Applied Sciences Engineering and Technology. 2010;2(3):227–232.

Elleuch M, Besbes S, Roiseux O, Blecke C. Quality characteristic of sesame seeds and by-products. Food chemistry, 2007;1 03:641–650.

Sher H, Al-Yemeni M, Bahkali A. Effect of environmental factors on the yield of selected mushroom species growing in two different agro ecological zones. Saudia Journal of Biology Sciences. 2010;17(3): 321–326. DOI: 10.1016/j.sjbs.2010.06.004

Zebib H, Bultosa G, Abera S. Physico-chemical properties of sesame (Sesamum indicum L.) varieties grown in Northern Area,Ethiopia. Agriculture Sciences, 2015;6(4):238–246. DOI: 10.4236/as.2015.62024

Pellet P, Shadarevian S. Food composition, tables for use in composition,in the Middle East, 2nd ed. Beirut (éd. 2e). Beirut: American University of Beirut ; 1970.

Deme T, Haki G, Retta N, Woldegiorgis A, Geleta M. Mineral and ant-nutritionnal contents of Niger Seed (Guizotia abyssinica L.f.) Cass, Linseed (Linumusita tissimum L.) and Sesame (Sesamum indicum L.) Varieties grown in Ethiopia. Foods, 2017;6(27):59-62. DOI: 10.3390/foods6040027

Alan J, Barrett ND, Rawling J, Fred W. Proteolytic Enzymes. Life sciences, 2012;79(20):1921-19228

37. Hassan. Studies on Egyptian sesame seeds (Sesamum indicum L.) and its products 1 – physicochemical analysis and phenolicacids of roasted Egyptian sesame seeds (Sesamum indicum L.). World Journal Dairy Food Science. 2012;7(2) :195–201.

Latika Yadav and Vibha Bhatnagar, Effect of soaking and roasting on nutritional and anti-nutritional components of chickpea (PRATAP-14), The Bioscan 2017;12(2): 771-774.

Raj KG, Shivraj SG, Nand KS, Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science Technology. 2015;52(2):676–684. DOI: 10.1007/s13197-013-0978-y

Okudu H, Oguizu A, Nwaokoro C. Nutrients and anti-nutrients contents of white beniseed cultivar (Sesamum indicum L.) in Nigeria. Direct Research Journal of Agriculture and Food Sciences. 2016;4 (10):290-293.

Mahgoub S, El Amin H, Salih M, El Owni O. Chemical composition,Antinutritional Factors and Functional Properties of Sesam( Semamun indicum L.) Seed Flour. Journal od Food Science and Technoloy. 2014;9(5):3464-3469.

Grases F, March R, Prieto B, Simonet A. Urinary phytate in calcium oxalate stone formers and healthy people dictary effets on phytate excretion. Scandinavian Journal of Urology and Nephrology. 1999;34:162-164.

Sefa-Dedeh S, Kofi E, Agyir- Sackey. Chemical composition and the effect of processing on oxalate content of cocoyam Xanthosoma sagittifolium and Colocasia. Science Direct, 2004;85(4): 479-487. DOI: 10.16/S0308-8146(02)00244-3

Kaur S, Nanda A, Singh B, Singh N. Effect of dehulling and roasting on oxalatate content of sesame seed. International Journal of Food Science and Nutrition. 2017;2(6): 65-68.

Adhikari S, Basak S, Bhattacharyya D. Effect of processing on nutrient, anti-nutrient, and bioactive components of sesame (Sesamum indicum L.). Critical Reviews in Food Science and Nutrition. 2019;59(13):2115-2127.

Ikpeme C, Eneji C, Igile G. Nutritional and organoleptic properties of wheat (Triticum aestivum) and Beniseed (Sesamum indicum) composite Flour Baked Foods. 2007.

Jimoh WA, Fagbenro OA, Adeparusi EO. Effect of processing on some minerals, anti-nutrients and nutritional composition of sesame (Sesamum indicum) seed meals. EJEAFChe, 2011; 10(1):1858-1864.

Hamid NS Thakur and Pradeep Kumar, Anti-nutritional factors, their adverse effects and need for adequate processing to reduce them in food. Agricinternational, 2017;4(1):56-60. DOI: 10.5958/2454-8634.2017.00013.4

Shi Y, Lan F, Matson, C, Mulligan P, Whetstine JR, Cole PA., Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell (2004);119: 941–953.