A Review on Production of Polygalacturonase Using Various Organisms and Its Applications

Main Article Content

A. Radha
R. Sneha
R. Kiruthiga
P. Priyadharshini
N. Prabhu


Polygalacturonase is a pectinolytic enzyme that catalyses the hydrolytic cleavage of the polygalacturonic linkage chain. An enzyme is a polygalacturonase is expressed in fruits. The polygalacturonase produced from various organisms isolated from various fruits. The solid-state fermentation was used in the production of polygalacturonase. The production of PG was found at various incubation period and pH and temperature are using fruits as best nitrogen and carbon sources. Although they have other parts of the genome they are active in the fruit. Peak expression requires a full range of promoter and saturation lines. Based on the physicochemical properties of the purified enzymes, this enzyme possesses great potential for industrial and biotechnological application such as oil extraction, fruit clarifications.

Polygalacturonase, microorganism, fermentation, optimum culture conditions.

Article Details

How to Cite
Radha, A., Sneha, R., Kiruthiga, R., Priyadharshini, P., & Prabhu, N. (2019). A Review on Production of Polygalacturonase Using Various Organisms and Its Applications. Asian Journal of Biotechnology and Bioresource Technology, 5(3), 1-12. https://doi.org/10.9734/ajb2t/2019/v5i330063
Review Article


Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK, et al. Microbial alkaline pectinase and their industrial applications: A review. App Microbial Biotechnol. 2002; 59:409-418.

Kobayashi T, Higaki N, Yajima N, Suzumatsu A, Hagihara H, et al. Purification and properties of a galacturonic acid-releasing exopolygalacturonase from a strain of Bacillus. Biosci Biotechnol Biochem. 2001; 65:842-847.

Jayani RS, Saxena S, Gupta R, et al. Microbial pectinolytic enzymes: A review. Process Biochem. 2005;40:2931-2944.

Gupta R, Beg QK, Khan S, Chauhan B, et al. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbial Biotechnol. 2002;60:381-395.

Tochi BN, Wang Z, Xu SY, Zhang W, et al. The influence of pectinase and pectinase/hemicellulases enzyme preparations on percentage pineapple juice recovery, particulates and sensory attributes. Pak J Nutr. 2009;8:1184-1189.

Vidhyasagar V, Saraniya A, Jeevaratnam K, et al. Identification of pectin degrading lactic acid bacteria from fermented food sources. Lnt J Adv Life Sci. 2013;6:8-12.

Kashyap DR, Vohra PK, Chopra S, Tewari R, et al. Applicatin of pectinase in the commercial sector: A review. Bioresour Technol. 2001;77:215-227.

Knoss W, Alkorta I, Garbisu C, Llama MJ, Serra JL, et al. Industrial application of pectic enzymes: Areview. Process Biochem. 1998;33:21-28.

Murad HA, Foda MS, et al. Production of yeast polygalacturonase on dairy wastes. Bioresour Technol. 1992;41:247-250.

Willats WDT, Knox P, Mikkelson JD, et al. Pectin: New insights into an polymer are starting to gel. Trends Food Sci Technol. 2001;17:97-104.

Khan M, Nakkeeran E, Umesh-Kuman S, et al. Potential application of pectinase in developing functional foods. Annu Rev Food Sci Technol. 2013;4:21-34.

Thakur A, Pahwa R, Singh S, Gupta R, et al. Production, purification and characterization of polygalacturonase from Mucor circinelloides ITCC 6025. Enzyme Res. 2010;1-7.

Hadfield KA, Bennett AB, et al. Polygalcturonase: Many genes in search of a function plant physiol. 1998;117(2):337-43.

Pickersgill R, Smith A, Worboys K, Jenkins J, et al. Crystal structure of polygalacturonase fromerwinch caratonoro ssp carotovora T Bio chem. 1998;273(38): 24660-4

Ch SW, Lee S, Shin W, et al. The X-ray structure of Aspergillus aculeate polygalacturonase and a modeled structure of the polygalacturonase –octagalacturonase – complex. Journal of Molecular Biology. 2001;311(4):863-78.
DOI: 10.1006/jmbi 2001.4919
[PMID: 11518536]

D’Ovidio R, Mattei B, Rberti S, Bellincampi D, et al. Polygalcturonases - inhibiting proteins and pectic oligomers in plant- pathogen interaction. Biochimica et Biophysica Acta. 2004;1696(2):237- 44.
DOI: 10.1016/j.bbapap.2003.08.012. PMID 14871664

Information on EC3.2.1.15-polygalcturonase”. BRENDA.

Pressey R, Reger BJ, et al. Polygalcturonase in pollen from corn and other grasses. Plant Science. 1089;59(1): 57-62.
DOI: 10.1016/D168-9452(89)90008-3

Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD, et al. Oligogalcturoides plant Damage –assocated molecular patterns and regulators of growth and development frontiers in plant science. PMC 3595604. PMID 23493833. Harholt J, Suttankakul A, Vibe Scheller H (June 2010) Biosynthesis. 2013;4(49):49.
DOI: 10.3389/fpls.2013.00049

Orifila C, Seymour GB, Willats WG, Huxham IM, Jarvis MC, Dover CJ, Thompson AJ, Knox JP, et al. Altered middle lamella homogalcturonan and distrupted deposition of (1 to 5)-alpha-L-arabinan in the pericarp of cnr, a ripening mutant of tomato plantphysiology. 2001; 126(1):21021.
DOI:10.1104/pp.126.PMC 02295
[PMID: 11351084]

Smith CJS, Watson CF, et al. Ray J, Bird CR, Morris PC, Schuch W, Grierson D, et al. Antisense RNA inhibition of polygalcturonase gene expression in transgenic tomato nature. 1998;334:724-726.

Moukamnerd C, Kawahara H, Katakura Y, et al. Feasibility study of ethanol production from food wastes by consolidated continuous solid-state fermentation. Journal of Sustainable Bioenergy Systems. 2013;3(2):143–148.

Darah I, Nisha M, Lim SH, et al. Enhancement of polygalacturonase production from Enterobacter aerogenes NbO2 by submerged fermentation. Advanced Studies in Biology. 2013;5(5): 173–189.

Agbabiaka TO, et al. Microbial deterioration of tomato fruit sold in three popular markets in llorin, kwara state, Nigeria. Fountain Journal and Applied Science. 2015;1:10-8.

Jayani RS, Saxena S, Gupta R, et al. Microbial pectinolytic enzymes: A review. Process Biochemistry. 2005;40(9):2931–2944.

Obafemi YD, Ajayi AA, Heerd D, Derricks-Horn S, Fern´andez-Lahore M, et al. Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions. Springer Plus. 2014;3(1):742.

Suhartatik Cahyanto MN, Rahardjo S, Miyashita M, Rahayu ES, et al. Isolation and identification of lactic acid bacteria producing β glucosidase from Indonesian fermented foods. International Food Research Journal. 2014;21(3):973–978.

Miller GL, et al. Use of dinitrosalicylic acid reagent for determination of reducing suga. Analytical Chemistry. 1959;31(3):426–428.

Rattanapanone N, Speirs J & Grierson D et al. Phytochemistry. 1978;17:1485-1486

Rattanapanone N, Grierson D, Stein M, et al. Phytochemistry. 1977;16:629-633.

Patil SR, Dayanand A, et al. Production of pectinase from deseeded sunflower head by Aspergillus Niger in submerged and solid-state conditions. Bioresour Technol. 2006;97:2054–2058.

Martin N, Souza SR, Silva R, Gomes E, et al. Pectinase production by fungal strains in solid state fermentation using agro-industrial by production; 2004.

Taskin E, Eltem R, et al. The enhancement of polygalacturonase and polymethylgalacturonase production on solid-state conditions by Aspergillus foetidus. Food Biotechnology. 2008;22: 203–217.

Ramli S, Alkarkhi AFM, Yong YS, Easa AM, et al. Utilization of banana peel as a functional ingredient in yellow noodle. Asian J Food Agro-Industry. 2009;2:321–329.

Somogyi M. Determination of reducing sugars by Nelson Somogyi method. J Biol Chem. 1952;200:245.

Tivkaa A, Bukola AT, Uduak NN, Benjamin A, et al. Production and partial characterization of pectinases from mango peels by Aspergillus taman. Ournal of Microbiology, Biotechnology and Food Sciences. 2013;3(1):59-62.

Adeleke AJ, Odunfa SA, Olanbiwoninu A, Owoseni M, et al. Production of cellulose and pectinase from orange peels by fungi. Nature Sci. 2012;10:107-112.

Yogesh K, Vamsi KK, Boraste A, Nikhil G, Soham T, et al. Study of pectinase production in submerged fermentation using different strains of Aspergillus Niger. Lnt J Microbial Res. 2009;1:13-17

Rangarajan V, Rajasekharan M, Ravichandran R, Sriganesh K, Vaitheeswaran V, et al. Pectinase production from orange peel extract and dried orange peel solid as substrate using Aspergillus Niger. Lnt J Biotechnol Biochem. 2010;6:445-453.

Phutela U, Dhuna V, Sandhu S, Chadha BS, et al. Pectinase and polygalacturonase production by a theromphilic Aspergillus fumigates isolated from decomposing orange peel. Braz J Microbial. 2005;36:63-69.

Dubey RC, Maheswari DK. Practical Microbiology. Chand S & Co et al., New Delhi, India, 2nd edition; 2006.

Kaur G , Kumar S, Sathyanarayana T, et al. Production, characterization and application of athermostable polygalacturonase of a thermophilic mould sporotrichum thermophile Apinis. Birresources Technology. 2004;94(3):239-243.

Miller GL, et al. Use of dinitrosalicyclic acid for reagent for determination of reducing sugar. Anal Chem. 1959;31:426-428.

Milina SMG, Pelissari FA, Vitorello CBM, et al. Screening and genetic improvement of pectinlytic fungi for degumming of textile fibres. Braz J Microbial. 2001;32:320-326.

Pressey, Russel. Polygalcturonase in tree pollens photochemistry. 1991;30(6):1753-755.
DOI: 10.016/0031-9422(91_85006-L

Berger RK, Reid PD, et al. Role of polygalcturonase in bean leaf abscission plant physiology. 1979;63(6): 1133-137.
DOI: 10.1104/pp 63.6.133.PMC 542983
[PMID: 6660870]