Green Synthesis of Chromium Nanoparticles by Aqueous Extract of Melia azedarach, Artemisia herba-alba and Bacteria Fragments against Erwinia amylovora

Main Article Content

O. M. Kotb
F. M. Abd El-Latif
A. R. Atawia
Sherif S. Saleh
S. F. El-Gioushy

Abstract

This study was carried out at the Tissue Culture and Germplasm Conservation Research Laboratory, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt. in cooperation with Department of Horticulture, Faculty of Agriculture, Benha University, Egypt. from 2016 to 2020.

Medicinal plants contain many reduction substances e.g. terpenoids, flavonoids, tannins, and glycosides. Melia azedarach and Artemisia herba-alba are rich in these compounds that are able to reduce chromium metal (VI) to chromium nanoparticles (Cr2O3). Chromium oxide nanoparticles were green synthesized by the reduction of potassium dichromate solution with Melia azedarach and Artemisia herba-alba plant extract. In biological methods, Cr2O3 nanoparticles were synthesized by two biological agents of Erwinia amylovora dry matter and extraction. The resulting Cr2O3 nanoparticles were characterized by transmission electron microscopy (TEM), UV-VIS absorption spectroscopy. The antibacterial effect of Cr2O3 nanoparticles against E. amylovora gave the highest inhibition zone for Cr2O3 nanoparticles reduction by Artemisia followed by Melia (31.0 and 25.0 mm respectively). These particles were shown to have an effective bactericide on contaminated callus pear cells by Erwinia bacteria which gave survival 75% and 50% and 0.0% contamination.

Keywords:
Chromium nanoparticles, Erwinia amylovora, Melia azedarach, Artemisia herba-alba, fire blight, Pyrus communis.

Article Details

How to Cite
Kotb, O. M., El-Latif, F. M. A., Atawia, A. R., Saleh, S. S., & El-Gioushy, S. F. (2020). Green Synthesis of Chromium Nanoparticles by Aqueous Extract of Melia azedarach, Artemisia herba-alba and Bacteria Fragments against Erwinia amylovora. Asian Journal of Biotechnology and Bioresource Technology, 6(2), 22-30. https://doi.org/10.9734/ajb2t/2020/v6i230077
Section
Original Research Article

References

Vishnukanta AC, Rana. Melia azedarach: A phytopharmacological review J. Pharmaco. Rev. 2008:2:173-179.

Carpinella C, Ferrayoli C, Valladares G, Defago M, Palacios S. Potent limonoid insect antifeedant from Melia azedarach. Biosci. Biotechnol. Biochem. 2002;66: 1731–1736.

Carpinella C, Defago M, Valladares G, Palacios S, Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J. Agric. Food Chem. 2003;51:369–374.

Banchio E, Valladares G, Defago M, Palacios S, Carpinella C., Effects of Melia azedarach (Meliaceae) fruit extracts on the leafminer Liriomyza huidobrensis (Diptera, Agromyzidae): Assessment in laboratory and field experiments. Ann. Appl. Biol. 2003;143:187–193.

Valladares G, Garbin L, Defago M, Carpinella C, Palacios S, Actividad antialimentaria e insecticida de un extracto de hojas senescentes de Melia azedarach (Meliaceae). Rev. Soc. Entomol. Argent. 2003;62:53–61.

Andreu J, Albert S, Magf R, Antifeedant activity of fruit and seed extracts of Melia azedarach and Azadirachta indica on larvae of Sesamia nonagrioides. Phytoparasitica. 2000;28(4):311-319.

Nathan SS. Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2006;84:98–108.

Carpinella C, Palacios S, Fulginiti S, Britos S, Alonso A, Acute toxicity of fruit extracts from Melia azedarach L. in rats. Rev. Toxicol. 1999;16:22–24.

Baytop T. Therapy with medicinal plants in Turkey; Istanbul University Press: Istanbul, Turkey. 1984;166-167.

Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B, Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province), J. of Ethnopharmacol. 2007;110:105-17.

Davis PH. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, Scotland. 1982;5:311.

Kalemba D, Kusewicz D, Swiader K. Antimicrobial properties of the essential oil of Artemisia asiatica Nakai. Phytother. Res. 2002;288-291.

Segal R, Feuerstein I, Danin A. Chemotypes of Artemisia herba-alba in Israel based on the sesquiterpene lactone and essential oil constitution. Phytochemistry. 1987;15:411-416.

Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J. of Ethnopharmacol. 1997;58:45-54.

Zeggwagh N-A, Farid O, Michel JB, Eddouks M, Moulay I. Cardiovascular effect of Artemisia herba-alba aqueous extract in spontaneously hypertensive rats. Methods and Findings in Experimental and Clinical Pharmacology. 2008;30:375-81.

Laid M, Hegazy M-EF, Ahmed AA. Sesquiterpene lactones from Algerian Artemisia herbaalba. Phytochemistry Lett. 2008;1:85-88.

Fenardji F, Klur M, Fourlon Mrs C. Ferrando R. White Artemisia, (Artemisia herba-alba), Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux. 1974;27(2):203-6.

Benmansour A, Taleb Bendiab SA. Comparative investigation of proteins and amino acids in Artemisia herba-alba residues and Algerian date stones. Proposal to use them as additional feed for livestock. J. de la Societe Algerienne de Chimie. 1998;8:67-71.

Callegari L. Rossi A. The active principles of Lybian Artemisia herba-alba and their pharmacological action. Archivio Italiano di Scienze Farmacologiche. 1939;8:145-60.

Callegari L. Rossi A. The active principles of Lybian Artemisia herba-alba and their pharmacological action. Chimie et Industrie (Paris). 1940;44:321.

Mueller Ms, Karhagomba Ib, Hirt Hm, Wemakor E. The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: chemical and clinical aspects, Journal Ethnopharmacol. 2000; 73:487-493.

Bellakhdar J. La Pharmacopée Marocaine Traditionnelle: Médecine Arabe Ancienne Et Savoirs Populaires - Saint –Etienne, Edit. Ibis Press; 1997.

Messai L. Thèse, Université Mentouri Constantine Algerie. 2011;96.

Humar W, Shakeel AS, Javid AB. The radical scavenging activity of some species of Artemisia. The Journal of Phytopharmacology. 2014;3:90-94.

Bora Kundan, Sharma Anupam. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. Journal of Ethnopharmacology. 2010;129: 403-9.

Esin B, Hüseyin B, Özcanc M. Propolis extracts against plant bacterial pathogens Journal of Food Engineering. 2006;77(4): 992–996.

Liu G, Li W, Zheng, P. et al. Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics. 2012;3:700.

Ramesh C, Mohan K, Senthil M, Ragunathan V. Antibacterial activity of Cr2O3 nanoparticles against E. coli. Reduction of chromate ions by Arachis hypogaea leaves. Archives of Applied Science Research. 2012;4:1894-1900.

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 2004;275:177-182.

Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology. 2008;74:2171-2178.

Dibrov P, Dzioba J, Gosink KK, Hase CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrobial Agents and Chemotherapy. 2002;46:2668-2670.

Russell AD, Hugo WB. Antimicrobial activity and action of silver. Prog Med Chem. 1994;31:351-370.

Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235-242.

Elechiguerra JL, Burt JL, Morones JR, Bragado AC, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 2005;3:3-6.

Bopp LH, Ehrlich HL. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol. 1988;150:426–431.

Rakesh Ananda S, Madegowda NM. Synthesis of chromium (III) oxide nanoparticles by electrochemical method and Mukia maderaspatana plant extract, characterization, KMnO4 decomposition and antibacterial study. Mod Res Catal. 2013;2:127-35.