Next-Generation Sequence: A Review on Metagenomic Approach to Discovery of Novel Enzymes from the Soil Environment
Asian Journal of Biotechnology and Bioresource Technology,
Page 10-19
DOI:
10.9734/ajb2t/2021/v7i130091
Abstract
Next-generation sequencing (NGS) makes a large mass of sequences. As a technology that allows the sequence of deoxyribonucleic acid (DNA) molecules larger than one million base pairs, it has been applied in the food research and medical fields. In the food sector, NGS has been used in food safety for the detection of species authenticity of food products and for mostly discovering novel industrial enzymes. The soil ecosystem houses a great number of non-culturable microbes thus novels enzymes can still be discovered to date. The conventional methods used in enzyme discovery have less chances to identify novel gene clusters and bioactivities. Therefore, there is a dire need for high-throughput technology, together with advanced bioinformatics for the search of novel enzymes or biocatalysts from soil metagenomes. This review article thus gives a summary of the progress in the application of next-generation sequencing in the identification and characterization of novel enzymes with a special focus on enzymes from the soil environment.
Keywords:
- Soil metagenome
- high throughput
- novel enzymes
- next-generation sequencing
How to Cite
References
DOI: 10.5808/GI.2013.11.3.114
Torsvik V, Sørheim R, Goksøyr J. Total bacterial diversity in soil and sediment communities—a review. J. Ind. Microbiol. Biotechnol. 1996;17(3-4).
DOI: 10.1007/bf01574690
Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Soil Structure/Soil Biota Interrelationships; 1993.
DOI: 10.1016/0016-7061(93)90150-J
Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM. Accessing the soil metagenome for studies of microbial diversity. Appl. Environ. Microbiol. 2011;77(4):1315-24.
DOI: 10.1128/AEM.01526-10
Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 2005;71(12):7768-77.
DOI: 10.1128/AEM.71.12.7768-7777.2005
Simon C, Daniel R. Metagenomic analyses: Past and future trends. Appl. Environ. Microbiol. 2011;77(4):1153-61.
DOI: 10.1128/AEM.02345-10
Bergmann JC, Costa OY, Gladden JM, Singer S, Heins R, D'haeseleer P, Simmons BA, Quirino BF. Discovery of two novel β-glucosidases from an amazon soil metagenomic library. FEMS Microbiol. Lett. 2014;351(2):147-55.
DOI: 10.1111/1574-6968.12332
Chemerys A, Pelletier E, Cruaud C, Martin F, Violet F, Jouanneau Y. Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl. Environ. Microbiol. 2014;80(21):6591-600.
DOI: 10.1128/AEM.01883-14
Jansson J. Towards tera terra: Terabase sequencing of terrestrial metagenomics. Microbe Mag. 2011;6(7):309-315.
DOI: 10.1128/microbe.6.309.1
Iqbal HA, Feng Z, Brady SF. Biocatalysts and small molecule products from metagenomic studies. Curr. Opin. Chem. Biol. 2012;16(1-2):109-16.
DOI: 10.1016/j.cbpa.2012.02.015
Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 2004;65(6):720-6.
DOI: 10.1007/s00253-004-1722-3
Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK, Kim YS, Tao W, Lee SW. A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 2010;88(5): 1125-34.
DOI: 10.1007/s00253-010-2729-6
Homaei AA, Sariri R, Vianello F, Stevanato R. Enzyme immobilization: An update. J. Chem. Biol. 2013;6(4):185-205.
DOI: 10.1007/s12154-013-0102-9
Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem. Biol. 1998;5(10):R245-9.
DOI: 10.1016/S1074-5521(98)90108-9
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable?. Microbes Environ. 2012;27(4):356–366.
DOI: 10.1264/jsme2.ME12092
Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 2017;8:1829.
DOI: 10.3389/fmicb.2017.01829
Daniel R. The soil metagenome–a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 2004;15(3):199-204.
DOI: 10.1016/j.copbio.2004.04.005
Zaparucha A, De Berardinis V, Vaxelaire-Vergne C. Chapter 1. Genome mining for enzyme discovery. 2018;1–27.
Ryding S. Shotgun metagenomic sequencing. 2013;1-5.
Acessed 10 December 2020.
Available:https://www.news-medical.net/life-sciences/Shotgun-Metagenomic-Sequencing.aspx P
Grada A, Weinbrecht K. Next-generation sequencing: Methodology and application. J. Invest. Dermatol. 2013; 133(8):e11.
DOI: 10.1038/jid.2013.248
Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. T Am. J. Hum. Genet. 2009;85(2):142-54.
DOI: 10.1016/j.ajhg.2009.06.022
Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos L. Metagenomics: Tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform. Biol. Insights. 2015;9:BBI-S12462.
DOI: 10.4137/BBI.S12462
Kulski JK. Next-generation sequencing—an overview of the history, tools, and “omic” applications. Next generation sequencing-advances, Applications and challenges. 2016;14:3-60.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057): 376-80.
DOI: 10.1038/nature03959
Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 2015;13(12):787-94.
DOI: 10.1038/nrmicro3565
Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, et al. Bacterial and archaeal diversities in Y unnan and T ibetan hot springs, China. Environ. Microbiol. 2013;15(4):1160-75.
DOI: 10.1111/1462-2920.12025
Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016;17(6):333.
DOI: 10.1038/nrg.2016.49
Metagenomic Next Generation Sequencing: How Does It Work and Is It Coming to Your Clinical Microbiology Lab. American Society for Microbiology. 2019;11:4.
Acessed 30 November 2020.
Available:https://asm.org/Articles/2019/November/Metagenomic-Next-Generation-Sequencing-How-Does-It
Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N. Metagenomic applications in exploration and development of novel enzymes from nature: A review. J. Genet. Eng. Biotechnol. 2020;18(1):39.
DOI: 10.1186/s43141-020-00043-9
Harris AD. Soil metagenomics: A prospective approach for novel enzyme discovery. Int. J. Curr. Res. 2012;4: 88-92.
Bertrand H, Poly F, Lombard N, Nalin R, Vogel TM, Simonet P. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J J. Microbiol. Methods. 2005;62(1):1.
DOI: 10.1016/j.mimet.2005.01.003
Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construction for next-generation sequencing: Overviews and challenges. Biotechniques. 2014;56(2):61-77.
DOI: 10.2144/000114133
Marine R, Polson SW, Ravel J, Hatfull G, Russell D, Sullivan M, Syed F, Dumas M, Wommack KE. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA. Appl. Environ. Microbiol. 2011; 77(22):8071-9.
DOI: 10.1128/AEM.05610-11
Berry AE, Chiocchini C, Selby T, Sosio M, Wellington EM. Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol. Lett. 2003; 223(1):15-20.
DOI: 10.1016/S0378-1097(03)00248-9
Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res. 1992;20(5):1083-5.
DOI: 10.1093/nar/20.5.1083
Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, et al. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 2000;66(6):2541-7.
DOI: 10.1128/AEM.66.6.2541-2547.2000
Horn‐Saban S, Amann‐Zalcenstein D. Frontiers in DNA sequencing: The (R) evolution of sequencing technologies. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Chichester: John Wiley & Sons, Ltd; 2006.
Adey A, Morrison HG, Xun X, Kitzman JO, Turner EH, Stackhouse B, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 2010;11(12):1-7.
DOI: 10.1186/gb-2010-11-12-r119
Kakirde KS, Parsley LC, Liles MR. Size does matter: Application-driven approaches for soil metagenomics. Soil Biol. Biochem. 2010;42(11):1911-23.
DOI: 10.1016/j.soilbio.2010.07.021.
Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 1996;242(1):84-9.
DOI: 10.1006/abio.1996.0432
Beja O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2000;2(5):516-29.
DOI: 10.1046/j.1462-2920.2000.00133.x.
Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Front. Genet. 2015;6:348.
DOI: 10.3389/fgene.2015.00348
Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 2006;34(3):e22.
DOI: 10.1093/nar/gnj023
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218): 53-9.
DOI: 10.1038/nature07517
Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348-52.
DOI: 10.1038/nature10242
Glenn TC. Field guide to next‐generation DNA sequencers. Mol. Ecol. Resour. 2011;11(5):759-69.
DOI: 10.1111/j.1755-0998.2011.03024.x
Whiteley AS, Jenkins S, Waite I, Kresoje N, Payne H, Mullan B, et al. Microbial 16S rRNA Ion tag and community metagenome sequencing using the Ion Torrent (PGM) Platform. J. Microbiol. Methods. 2012;91(1):80-8.
DOI: 10.1016/j.mimet.2012.07.008
Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, Mikkelsen JD. Novel α-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PloS one. 2016;11(1):e0147438.
DOI: 10.1371/journal.pone.0147438.
Bunterngsook B, Kanokratana P, Thongaram T, Tanapongpipat S, Uengwetwanit T, Rachdawong S, et al. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome. Biosci. Biotechnol. Biochem. 2010;74(9)1848–1854.
DOI: 10.1271/bbb.100249.
Stöveken J, Singh R, Kolkenbrock S, Zakrzewski M, Wibberg D, Eikmeyer FG, et al. Successful heterologous expression of a novel chitinase identified by sequence analyses of the metagenome from a chitin-enriched soil sample. J. Biotechnol. 2015;201:60-8.
DOI: 10.1016/j.jbiotec.2014.09.010.
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12(2):1-4.
DOI: 10.1186/gb-2011-12-2-r18
Popovic A, Hai T, Tchigvintsev A, Hajighasemi M, Nocek B, Khusnutdinova AN, et al. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Sci. Rep. 2017;7(1):1-5.
DOI: 10.1038/srep44103
Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R. Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett. 2012;34(4):663-75.
DOI: 10.1007/s10529-011-0830-2
Huson DH, Weber N. Microbial community analysis using MEGAN. 1st ed. Methods in enzymology. 2013;531:465-85.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75(23):7537-41.
DOI: 10.1128/AEM.01541-09
Karamperis K, Wadge S, Koromina M, Patrinos GP. Genetic testing. In: Applied Genomics and Public Health 2020;189-207.
Meera Krishna B, Khan MA, Khan ST. Next-generation sequencing (NGS) platforms: An exciting era of genome sequence analysis. In: Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M, editors. Microbial Genomics in Sustainable Agroecosystems: 2nd ed. Singapore: Springer Singapore; 2019.
Hsiao SJ. Sources of error in molecular diagnostic analyses. In Accurate Results in the Clinical Laboratory. 2019;337-347.
-
Abstract View: 54 times
PDF Download: 44 times