Biotechnological Production of Carotenoid from Oleaginous Red yeast and Its Applications
Asian Journal of Biotechnology and Bioresource Technology,
Page 15-29
DOI:
10.9734/ajb2t/2022/v8i230122
Abstract
The demand for carotenoids and their derivatives from natural sources is increasing rapidly due to public concern about food safety and health issues, and thus, carotenoid production from microbial fermentation is increasing significantly due to its ability to accumulate higher levels of carotene. Carotenoids, lipid-soluble pigments, are responsible for the vibrant colors in food and microorganisms. Carotenoids have the most important advantages in terms of antioxidant and anticancer activity. These possible applications are used for treating various diseases like xerophthalmia, keratomalacia, skin acne, breast cancer and tumor formation. They are widely used in the pharmaceutical, cosmetics and food industries. Due to the overall increase in the cost of carotenoids, carotenoids are produced in the pharmaceutical, food and cosmetics industries through chemical synthesis or extraction from plants. The oleaginous red yeast, Rhodotorula minuta, is well known for producing a high yield of carotenoids with a low production cost. Over the years, these carotenoids have been produced from oleaginous red yeast, using low-cost substrates or agricultural waste for cost-effective purposes. In this paper, we highlighted the production of carotenoids from oleaginous red yeast and its applications.
Keywords:
- Carotenoids
- Rhodotorula
- Agricultural residue
- Antimicrobial activity
How to Cite
References
Da Silva SRS, Stamford TCM, Albuquerque WWC, Vidal EE, Stamford TLM. (2020). Reutilization of residual glycerin for the produce β-carotene by Rhodotorula minuta.BiotechnolLett. 2020;42(3):437–443. DOI:10.1007/s10529-020-02790-8.
Tang W, Wang Y, Zhang J, Cai Y, He Z.Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. J. Microbiol. Biotechnol. 2019;29:(4):507–517.
Available:https://doi.org/10.4014/jmb.1901.01022.
Liu C, Hu B, Cheng Y, Go Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresource Technology. 2021;337:125398. DOI:10.1016/j.biortech.2021.125398.
Kot AM, Blazejak S, Gientka I, Kieliszek M, Brys J. Torulene and torularhodin: “new” fungal carotenoids for industry? Microb Cell Fact. 2018;17(1):49. DOI:10.1186/s12934-018-0893-z .
Igreja WS, de Andrade MF, Lopes AS, Chiste RC. Biotechnological Production of Carotenoids Using Low Cost-Substrates Is Influenced by Cultivation Parameters: A Review, Int J MolSci, 2021;22(16):8819. DOI: 10.3390/ijms22168819.
Du C, Guo Y, Cheng Y, Han M, Zhang W, Qian H. Torulene and torularhodin, protects human prostate stromal cells from hydrogen peroxide-induced oxidative stress damage through the regulation of Bcl-2/Bax mediated apoptosis. Free. Radic. Res. 2017;51(2):113–123. DOI:10.1080/10715762.2017.1285024.
Tang W, Wang Y, Zhang J, Cai Y, He Z.Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. J. Microbiol. Biotechnol. 2019;29:(4):507–517. DOI/:10.4014/jmb.1901.01022.
Garay LA, Sitepu IR, Cajka T, Chandra I, Shi S, Lin T et al. Eighteen new oleaginous yeast species. J. Ind. Microbiol. Biotechnol. 2016; 43(7): 887–900. DOI:10.1007/s10295-016-1765-3.
da Frota SM, Cunha FA, Cunha MDCDSO, Martins RT, Menezes EA, Fechine PBA. Synergistic Eeffect of Polyene Antifungals and Silver Nanoparticles Against Candida Parapsilosis. 2018. J. Antibiot. Res. 2018;2(1).
Shin J, Song MH, Oh JW, Keum YS, Saini RK. Pro-Oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants. 2020; 9(6):532. DOI:10.3390/antiox9060532.
Soliman H, Elsayed A, Dyaa A. Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt. j. basic appl. sc. 2018;5(3):228-233. DOI:10.1016/j.ejbas.2018.05.005
Bertacchi S, Bettiga M, Porro D, Branduardi P. Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidiumtoruloides. Biotechnol Biofuels. 2020; 13(1):47. DOI:10.1186/s13068-020-01682-3.
Husseiny SM, Abdelhafez AA, Ali AAA, Sand HM. Optimization of β-Carotene Production from Rhodotorula glutinis ATCC 4054 Growing on Agro-industrial Substrate Using Plackett–Burman Design. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2017;135:117-128. DOI:10.1007/s40011-017-0908-2 .
Liu Z, Feist AM, Dragone G, Mussatto SI. Lipid and carotenoid production from wheat straw hydrolysates by different oleaginous yeasts. J. Clean. Prod. 2019;119308. DOI:10.1016/j.jclepro.2019.119308.
Seveiri RM, Hamidi M, Delattre C, Rahmani B, Darzi S, Pierre G.et al. Characterization of the exopolysaccharides from Rhodotorula minuta IBRC-M 30135 and evaluation of their emulsifying, antioxidant and anti proliferative activities. Med. Sci. 2019;23(97):381–389. Available:http://eprints.skums.ac.ir/id/eprint/7707.
Lyman M, Urbin, S, Strout, C, Rubinfeld B. The Oleaginous Red Yeast Rhodotorula/Rhodosporidium: A Factory for Industrial Bioproducts. Yeasts Biotechnol. 2019. DOI:10.5772/intechopen.84129
Park YK, Nicaud JM, Ledesma-Amaro R. The Engineering Potential ofRhodosporidiumtoruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol. 2018; 36(3):304–317. DOI:10.1016/j.tibtech.2017.10.013.
Singh G, Sinha S, Bandyopadhyay KK, Lawrence M, Paul, D. Triauxic growth of an oleaginous red yeast Rhodosporidiumtoruloides on waste “extract” for enhanced and concomitant lipid and β-carotene production. Microb Cell Fact. 2018; 17(1):182. DOI:10.1186/s12934-018-1026-4.
Fei Q, O’Brien M, Nelson R, Chen X, Lowell A, Dowe N. Enhanced lipid production by Rhodosporidiumtoruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels. 2016:9:130. DOI:10.1186/s13068-016-0542-x.
Freitas C, Parreira TM, Roseiro J, Reis A, da Silva TL. Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidiumtoruloides NCYC 921 using flow cytometry. Bioresourc Technol. 2014;158, 355–359. DOI:10.1016/j.biortech.2014.02.07.
Pham KD, Shida Y, Miyata A, Takamizawa T, Suzuki Y, Ara S et al. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodo sporidium toruloides. Biosci. Biotechnol. Biochem. 2020;1–12. DOI:10.1080/09168451.2020.1740581.
Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M. Rhodotorula glutinis— potential source of lipids, carotenoids, and enzymes for use in industries. Applied Microbiology and Biotechnology. 2016;100(14):6103–6117. DOI:10.1007/s00253-016- 7611-8.
Karamerou EE, Theodoropoulos C, Webb C. A biorefinery approach to microbial oil production from glycerol by Rhodotorula glutinis. Biomass and Bioenergy. 2016;89:113–122.
DOI:10.1016/j.biombioe.2016.01.007.
Cheng XY, Xiong YJ, Yang MM, Zhu MJ. Preparation of astaxanthin mask from Phaffiarhodozyma and its evaluation. Process Biochem. 2018;79;195- 202. DOI:10.1016/j.procbio.2018.12.027.
Park YK, Nicaud JM, Ledesma-Amaro R. The Engineering Potential of Rhodosporidiumtoruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol. 2018; 36(3):304–317.
DOI:10.1016/j.tibtech.2017.10.013.
Uprety BK, Dalli SS, Rakshit SK. Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidiumtoruloides ATCC 10788 capable of growing in the presence of impurities. Energy Conversion and Management. 2017;135:117–128. DOI:10.1016/j.enconman.2016.12.071 .
Bertacchi S, Bettiga M, Porro D, Branduardi P. Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidiumtoruloides. Biotechnol Biofuels. 2020; 13(1):47. DOI:10.1186/s13068-020-01682-3.
Mata-Gomez LC, Montanez JC, Mendez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: An overview. Microb. Cell Fact. 2014;13: 1–11.
Available:https://doi.org/10.1186/1475-2859-13-1.
Zhang Z, Zhang X, Tan T. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour. Technol. 2014; 157:149–153. DOI:10.1016/j.biortech.2014.01.039.
Kot AM, Błazejak S, Kieliszek M, Gientka I, Brys J et al. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology. 2017; 27: 25–31. DOI:10.1016/j.ejbt.2017.01.007.
Yolmeh M, Khomeiri M. Using physical and chemical mutagens for enhanced carotenoid production from Rhodotorula glutinis (PTCC 5256). Biocatal. Agric. Biotechnol. 2016; 8:158–166.
DOI:10.1016/j.bcab.2016.09.004
Rapoport A, Guzhova I, Bernetti L, Buzzini P, KieliszekM,et al. Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites. 2021;11(2), 92.
DOI:10.3390/metabo11020092.
Ram S, Mitra M, Shah F, Tirkey SR, Mishra S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J.funct.Foods. 2020; 67: 103867.
DOI:10.1016/j.jff.2020.103867.
Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol. Biotechnol. 2017;4:(1).
DOI:10.1186/s40694-017-0033-2
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresour. Technol. 2021; 337:125398. DOI:10.1016/j.biortech.2021.125398
-
Abstract View: 125 times
PDF Download: 32 times